zorldo

Goofing around with Ebiten
git clone git://bsandro.tech/zorldo
Log | Files | Refs | README

stdlibwriter.go (14797B)


      1 // Code generated by gen.go. DO NOT EDIT.
      2 
      3 // Copyright 2009 The Go Authors. All rights reserved.
      4 // Use of this source code is governed by a BSD-style
      5 // license that can be found in the LICENSE file.
      6 
      7 package png
      8 
      9 import (
     10 	"bufio"
     11 	"compress/zlib"
     12 	"encoding/binary"
     13 	"hash/crc32"
     14 	"image"
     15 	"image/color"
     16 	"io"
     17 	"strconv"
     18 )
     19 
     20 // Encoder configures encoding PNG images.
     21 type Encoder struct {
     22 	CompressionLevel CompressionLevel
     23 
     24 	// BufferPool optionally specifies a buffer pool to get temporary
     25 	// EncoderBuffers when encoding an image.
     26 	BufferPool EncoderBufferPool
     27 }
     28 
     29 // EncoderBufferPool is an interface for getting and returning temporary
     30 // instances of the EncoderBuffer struct. This can be used to reuse buffers
     31 // when encoding multiple images.
     32 type EncoderBufferPool interface {
     33 	Get() *EncoderBuffer
     34 	Put(*EncoderBuffer)
     35 }
     36 
     37 // EncoderBuffer holds the buffers used for encoding PNG images.
     38 type EncoderBuffer encoder
     39 
     40 type encoder struct {
     41 	enc     *Encoder
     42 	w       io.Writer
     43 	m       image.Image
     44 	cb      int
     45 	err     error
     46 	header  [8]byte
     47 	footer  [4]byte
     48 	tmp     [4 * 256]byte
     49 	cr      [nFilter][]uint8
     50 	pr      []uint8
     51 	zw      *zlib.Writer
     52 	zwLevel int
     53 	bw      *bufio.Writer
     54 }
     55 
     56 // CompressionLevel indicates the compression level.
     57 type CompressionLevel int
     58 
     59 const (
     60 	DefaultCompression CompressionLevel = 0
     61 	NoCompression      CompressionLevel = -1
     62 	BestSpeed          CompressionLevel = -2
     63 	BestCompression    CompressionLevel = -3
     64 
     65 	// Positive CompressionLevel values are reserved to mean a numeric zlib
     66 	// compression level, although that is not implemented yet.
     67 )
     68 
     69 type opaquer interface {
     70 	Opaque() bool
     71 }
     72 
     73 // Returns whether or not the image is fully opaque.
     74 func opaque(m image.Image) bool {
     75 	if o, ok := m.(opaquer); ok {
     76 		return o.Opaque()
     77 	}
     78 	b := m.Bounds()
     79 	for y := b.Min.Y; y < b.Max.Y; y++ {
     80 		for x := b.Min.X; x < b.Max.X; x++ {
     81 			_, _, _, a := m.At(x, y).RGBA()
     82 			if a != 0xffff {
     83 				return false
     84 			}
     85 		}
     86 	}
     87 	return true
     88 }
     89 
     90 // The absolute value of a byte interpreted as a signed int8.
     91 func abs8(d uint8) int {
     92 	if d < 128 {
     93 		return int(d)
     94 	}
     95 	return 256 - int(d)
     96 }
     97 
     98 func (e *encoder) writeChunk(b []byte, name string) {
     99 	if e.err != nil {
    100 		return
    101 	}
    102 	n := uint32(len(b))
    103 	if int(n) != len(b) {
    104 		e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
    105 		return
    106 	}
    107 	binary.BigEndian.PutUint32(e.header[:4], n)
    108 	e.header[4] = name[0]
    109 	e.header[5] = name[1]
    110 	e.header[6] = name[2]
    111 	e.header[7] = name[3]
    112 	crc := crc32.NewIEEE()
    113 	crc.Write(e.header[4:8])
    114 	crc.Write(b)
    115 	binary.BigEndian.PutUint32(e.footer[:4], crc.Sum32())
    116 
    117 	_, e.err = e.w.Write(e.header[:8])
    118 	if e.err != nil {
    119 		return
    120 	}
    121 	_, e.err = e.w.Write(b)
    122 	if e.err != nil {
    123 		return
    124 	}
    125 	_, e.err = e.w.Write(e.footer[:4])
    126 }
    127 
    128 func (e *encoder) writeIHDR() {
    129 	b := e.m.Bounds()
    130 	binary.BigEndian.PutUint32(e.tmp[0:4], uint32(b.Dx()))
    131 	binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dy()))
    132 	// Set bit depth and color type.
    133 	switch e.cb {
    134 	case cbG8:
    135 		e.tmp[8] = 8
    136 		e.tmp[9] = ctGrayscale
    137 	case cbTC8:
    138 		e.tmp[8] = 8
    139 		e.tmp[9] = ctTrueColor
    140 	case cbP8:
    141 		e.tmp[8] = 8
    142 		e.tmp[9] = ctPaletted
    143 	case cbP4:
    144 		e.tmp[8] = 4
    145 		e.tmp[9] = ctPaletted
    146 	case cbP2:
    147 		e.tmp[8] = 2
    148 		e.tmp[9] = ctPaletted
    149 	case cbP1:
    150 		e.tmp[8] = 1
    151 		e.tmp[9] = ctPaletted
    152 	case cbTCA8:
    153 		e.tmp[8] = 8
    154 		e.tmp[9] = ctTrueColorAlpha
    155 	case cbG16:
    156 		e.tmp[8] = 16
    157 		e.tmp[9] = ctGrayscale
    158 	case cbTC16:
    159 		e.tmp[8] = 16
    160 		e.tmp[9] = ctTrueColor
    161 	case cbTCA16:
    162 		e.tmp[8] = 16
    163 		e.tmp[9] = ctTrueColorAlpha
    164 	}
    165 	e.tmp[10] = 0 // default compression method
    166 	e.tmp[11] = 0 // default filter method
    167 	e.tmp[12] = 0 // non-interlaced
    168 	e.writeChunk(e.tmp[:13], "IHDR")
    169 }
    170 
    171 func (e *encoder) writePLTEAndTRNS(p color.Palette) {
    172 	if len(p) < 1 || len(p) > 256 {
    173 		e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
    174 		return
    175 	}
    176 	last := -1
    177 	for i, c := range p {
    178 		c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
    179 		e.tmp[3*i+0] = c1.R
    180 		e.tmp[3*i+1] = c1.G
    181 		e.tmp[3*i+2] = c1.B
    182 		if c1.A != 0xff {
    183 			last = i
    184 		}
    185 		e.tmp[3*256+i] = c1.A
    186 	}
    187 	e.writeChunk(e.tmp[:3*len(p)], "PLTE")
    188 	if last != -1 {
    189 		e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS")
    190 	}
    191 }
    192 
    193 // An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
    194 // including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
    195 // should be relatively infrequent, since writeIDATs uses a bufio.Writer.
    196 //
    197 // This method should only be called from writeIDATs (via writeImage).
    198 // No other code should treat an encoder as an io.Writer.
    199 func (e *encoder) Write(b []byte) (int, error) {
    200 	e.writeChunk(b, "IDAT")
    201 	if e.err != nil {
    202 		return 0, e.err
    203 	}
    204 	return len(b), nil
    205 }
    206 
    207 // Chooses the filter to use for encoding the current row, and applies it.
    208 // The return value is the index of the filter and also of the row in cr that has had it applied.
    209 func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {
    210 	// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
    211 	// This is the same heuristic that libpng uses, although the filters are attempted in order of
    212 	// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
    213 	// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
    214 	cdat0 := cr[0][1:]
    215 	cdat1 := cr[1][1:]
    216 	cdat2 := cr[2][1:]
    217 	cdat3 := cr[3][1:]
    218 	cdat4 := cr[4][1:]
    219 	pdat := pr[1:]
    220 	n := len(cdat0)
    221 
    222 	// The up filter.
    223 	sum := 0
    224 	for i := 0; i < n; i++ {
    225 		cdat2[i] = cdat0[i] - pdat[i]
    226 		sum += abs8(cdat2[i])
    227 	}
    228 	best := sum
    229 	filter := ftUp
    230 
    231 	// The Paeth filter.
    232 	sum = 0
    233 	for i := 0; i < bpp; i++ {
    234 		cdat4[i] = cdat0[i] - pdat[i]
    235 		sum += abs8(cdat4[i])
    236 	}
    237 	for i := bpp; i < n; i++ {
    238 		cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
    239 		sum += abs8(cdat4[i])
    240 		if sum >= best {
    241 			break
    242 		}
    243 	}
    244 	if sum < best {
    245 		best = sum
    246 		filter = ftPaeth
    247 	}
    248 
    249 	// The none filter.
    250 	sum = 0
    251 	for i := 0; i < n; i++ {
    252 		sum += abs8(cdat0[i])
    253 		if sum >= best {
    254 			break
    255 		}
    256 	}
    257 	if sum < best {
    258 		best = sum
    259 		filter = ftNone
    260 	}
    261 
    262 	// The sub filter.
    263 	sum = 0
    264 	for i := 0; i < bpp; i++ {
    265 		cdat1[i] = cdat0[i]
    266 		sum += abs8(cdat1[i])
    267 	}
    268 	for i := bpp; i < n; i++ {
    269 		cdat1[i] = cdat0[i] - cdat0[i-bpp]
    270 		sum += abs8(cdat1[i])
    271 		if sum >= best {
    272 			break
    273 		}
    274 	}
    275 	if sum < best {
    276 		best = sum
    277 		filter = ftSub
    278 	}
    279 
    280 	// The average filter.
    281 	sum = 0
    282 	for i := 0; i < bpp; i++ {
    283 		cdat3[i] = cdat0[i] - pdat[i]/2
    284 		sum += abs8(cdat3[i])
    285 	}
    286 	for i := bpp; i < n; i++ {
    287 		cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
    288 		sum += abs8(cdat3[i])
    289 		if sum >= best {
    290 			break
    291 		}
    292 	}
    293 	if sum < best {
    294 		filter = ftAverage
    295 	}
    296 
    297 	return filter
    298 }
    299 
    300 func zeroMemory(v []uint8) {
    301 	for i := range v {
    302 		v[i] = 0
    303 	}
    304 }
    305 
    306 func (e *encoder) writeImage(w io.Writer, m image.Image, cb int, level int) error {
    307 	if e.zw == nil || e.zwLevel != level {
    308 		zw, err := zlib.NewWriterLevel(w, level)
    309 		if err != nil {
    310 			return err
    311 		}
    312 		e.zw = zw
    313 		e.zwLevel = level
    314 	} else {
    315 		e.zw.Reset(w)
    316 	}
    317 	defer e.zw.Close()
    318 
    319 	bitsPerPixel := 0
    320 
    321 	switch cb {
    322 	case cbG8:
    323 		bitsPerPixel = 8
    324 	case cbTC8:
    325 		bitsPerPixel = 24
    326 	case cbP8:
    327 		bitsPerPixel = 8
    328 	case cbP4:
    329 		bitsPerPixel = 4
    330 	case cbP2:
    331 		bitsPerPixel = 2
    332 	case cbP1:
    333 		bitsPerPixel = 1
    334 	case cbTCA8:
    335 		bitsPerPixel = 32
    336 	case cbTC16:
    337 		bitsPerPixel = 48
    338 	case cbTCA16:
    339 		bitsPerPixel = 64
    340 	case cbG16:
    341 		bitsPerPixel = 16
    342 	}
    343 
    344 	// cr[*] and pr are the bytes for the current and previous row.
    345 	// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
    346 	// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
    347 	// other PNG filter types. These buffers are allocated once and re-used for each row.
    348 	// The +1 is for the per-row filter type, which is at cr[*][0].
    349 	b := m.Bounds()
    350 	sz := 1 + (bitsPerPixel*b.Dx()+7)/8
    351 	for i := range e.cr {
    352 		if cap(e.cr[i]) < sz {
    353 			e.cr[i] = make([]uint8, sz)
    354 		} else {
    355 			e.cr[i] = e.cr[i][:sz]
    356 		}
    357 		e.cr[i][0] = uint8(i)
    358 	}
    359 	cr := e.cr
    360 	if cap(e.pr) < sz {
    361 		e.pr = make([]uint8, sz)
    362 	} else {
    363 		e.pr = e.pr[:sz]
    364 		zeroMemory(e.pr)
    365 	}
    366 	pr := e.pr
    367 
    368 	gray, _ := m.(*image.Gray)
    369 	rgba, _ := m.(*image.RGBA)
    370 	paletted, _ := m.(*image.Paletted)
    371 	nrgba, _ := m.(*image.NRGBA)
    372 
    373 	for y := b.Min.Y; y < b.Max.Y; y++ {
    374 		// Convert from colors to bytes.
    375 		i := 1
    376 		switch cb {
    377 		case cbG8:
    378 			if gray != nil {
    379 				offset := (y - b.Min.Y) * gray.Stride
    380 				copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()])
    381 			} else {
    382 				for x := b.Min.X; x < b.Max.X; x++ {
    383 					c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)
    384 					cr[0][i] = c.Y
    385 					i++
    386 				}
    387 			}
    388 		case cbTC8:
    389 			// We have previously verified that the alpha value is fully opaque.
    390 			cr0 := cr[0]
    391 			stride, pix := 0, []byte(nil)
    392 			if rgba != nil {
    393 				stride, pix = rgba.Stride, rgba.Pix
    394 			} else if nrgba != nil {
    395 				stride, pix = nrgba.Stride, nrgba.Pix
    396 			}
    397 			if stride != 0 {
    398 				j0 := (y - b.Min.Y) * stride
    399 				j1 := j0 + b.Dx()*4
    400 				for j := j0; j < j1; j += 4 {
    401 					cr0[i+0] = pix[j+0]
    402 					cr0[i+1] = pix[j+1]
    403 					cr0[i+2] = pix[j+2]
    404 					i += 3
    405 				}
    406 			} else {
    407 				for x := b.Min.X; x < b.Max.X; x++ {
    408 					r, g, b, _ := m.At(x, y).RGBA()
    409 					cr0[i+0] = uint8(r >> 8)
    410 					cr0[i+1] = uint8(g >> 8)
    411 					cr0[i+2] = uint8(b >> 8)
    412 					i += 3
    413 				}
    414 			}
    415 		case cbP8:
    416 			if paletted != nil {
    417 				offset := (y - b.Min.Y) * paletted.Stride
    418 				copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()])
    419 			} else {
    420 				pi := m.(image.PalettedImage)
    421 				for x := b.Min.X; x < b.Max.X; x++ {
    422 					cr[0][i] = pi.ColorIndexAt(x, y)
    423 					i += 1
    424 				}
    425 			}
    426 
    427 		case cbP4, cbP2, cbP1:
    428 			pi := m.(image.PalettedImage)
    429 
    430 			var a uint8
    431 			var c int
    432 			pixelsPerByte := 8 / bitsPerPixel
    433 			for x := b.Min.X; x < b.Max.X; x++ {
    434 				a = a<<uint(bitsPerPixel) | pi.ColorIndexAt(x, y)
    435 				c++
    436 				if c == pixelsPerByte {
    437 					cr[0][i] = a
    438 					i += 1
    439 					a = 0
    440 					c = 0
    441 				}
    442 			}
    443 			if c != 0 {
    444 				for c != pixelsPerByte {
    445 					a = a << uint(bitsPerPixel)
    446 					c++
    447 				}
    448 				cr[0][i] = a
    449 			}
    450 
    451 		case cbTCA8:
    452 			if nrgba != nil {
    453 				offset := (y - b.Min.Y) * nrgba.Stride
    454 				copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4])
    455 			} else {
    456 				// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
    457 				for x := b.Min.X; x < b.Max.X; x++ {
    458 					c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
    459 					cr[0][i+0] = c.R
    460 					cr[0][i+1] = c.G
    461 					cr[0][i+2] = c.B
    462 					cr[0][i+3] = c.A
    463 					i += 4
    464 				}
    465 			}
    466 		case cbG16:
    467 			for x := b.Min.X; x < b.Max.X; x++ {
    468 				c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)
    469 				cr[0][i+0] = uint8(c.Y >> 8)
    470 				cr[0][i+1] = uint8(c.Y)
    471 				i += 2
    472 			}
    473 		case cbTC16:
    474 			// We have previously verified that the alpha value is fully opaque.
    475 			for x := b.Min.X; x < b.Max.X; x++ {
    476 				r, g, b, _ := m.At(x, y).RGBA()
    477 				cr[0][i+0] = uint8(r >> 8)
    478 				cr[0][i+1] = uint8(r)
    479 				cr[0][i+2] = uint8(g >> 8)
    480 				cr[0][i+3] = uint8(g)
    481 				cr[0][i+4] = uint8(b >> 8)
    482 				cr[0][i+5] = uint8(b)
    483 				i += 6
    484 			}
    485 		case cbTCA16:
    486 			// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
    487 			for x := b.Min.X; x < b.Max.X; x++ {
    488 				c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)
    489 				cr[0][i+0] = uint8(c.R >> 8)
    490 				cr[0][i+1] = uint8(c.R)
    491 				cr[0][i+2] = uint8(c.G >> 8)
    492 				cr[0][i+3] = uint8(c.G)
    493 				cr[0][i+4] = uint8(c.B >> 8)
    494 				cr[0][i+5] = uint8(c.B)
    495 				cr[0][i+6] = uint8(c.A >> 8)
    496 				cr[0][i+7] = uint8(c.A)
    497 				i += 8
    498 			}
    499 		}
    500 
    501 		// Apply the filter.
    502 		// Skip filter for NoCompression and paletted images (cbP8) as
    503 		// "filters are rarely useful on palette images" and will result
    504 		// in larger files (see http://www.libpng.org/pub/png/book/chapter09.html).
    505 		f := ftNone
    506 		if level != zlib.NoCompression && cb != cbP8 && cb != cbP4 && cb != cbP2 && cb != cbP1 {
    507 			// Since we skip paletted images we don't have to worry about
    508 			// bitsPerPixel not being a multiple of 8
    509 			bpp := bitsPerPixel / 8
    510 			f = filter(&cr, pr, bpp)
    511 		}
    512 
    513 		// Write the compressed bytes.
    514 		if _, err := e.zw.Write(cr[f]); err != nil {
    515 			return err
    516 		}
    517 
    518 		// The current row for y is the previous row for y+1.
    519 		pr, cr[0] = cr[0], pr
    520 	}
    521 	return nil
    522 }
    523 
    524 // Write the actual image data to one or more IDAT chunks.
    525 func (e *encoder) writeIDATs() {
    526 	if e.err != nil {
    527 		return
    528 	}
    529 	if e.bw == nil {
    530 		e.bw = bufio.NewWriterSize(e, 1<<15)
    531 	} else {
    532 		e.bw.Reset(e)
    533 	}
    534 	e.err = e.writeImage(e.bw, e.m, e.cb, levelToZlib(e.enc.CompressionLevel))
    535 	if e.err != nil {
    536 		return
    537 	}
    538 	e.err = e.bw.Flush()
    539 }
    540 
    541 // This function is required because we want the zero value of
    542 // Encoder.CompressionLevel to map to zlib.DefaultCompression.
    543 func levelToZlib(l CompressionLevel) int {
    544 	switch l {
    545 	case DefaultCompression:
    546 		return zlib.DefaultCompression
    547 	case NoCompression:
    548 		return zlib.NoCompression
    549 	case BestSpeed:
    550 		return zlib.BestSpeed
    551 	case BestCompression:
    552 		return zlib.BestCompression
    553 	default:
    554 		return zlib.DefaultCompression
    555 	}
    556 }
    557 
    558 func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") }
    559 
    560 // Encode writes the Image m to w in PNG format. Any Image may be
    561 // encoded, but images that are not image.NRGBA might be encoded lossily.
    562 func Encode(w io.Writer, m image.Image) error {
    563 	var e Encoder
    564 	return e.Encode(w, m)
    565 }
    566 
    567 // Encode writes the Image m to w in PNG format.
    568 func (enc *Encoder) Encode(w io.Writer, m image.Image) error {
    569 	// Obviously, negative widths and heights are invalid. Furthermore, the PNG
    570 	// spec section 11.2.2 says that zero is invalid. Excessively large images are
    571 	// also rejected.
    572 	mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())
    573 	if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
    574 		return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10))
    575 	}
    576 
    577 	var e *encoder
    578 	if enc.BufferPool != nil {
    579 		buffer := enc.BufferPool.Get()
    580 		e = (*encoder)(buffer)
    581 
    582 	}
    583 	if e == nil {
    584 		e = &encoder{}
    585 	}
    586 	if enc.BufferPool != nil {
    587 		defer enc.BufferPool.Put((*EncoderBuffer)(e))
    588 	}
    589 
    590 	e.enc = enc
    591 	e.w = w
    592 	e.m = m
    593 
    594 	var pal color.Palette
    595 	// cbP8 encoding needs PalettedImage's ColorIndexAt method.
    596 	if _, ok := m.(image.PalettedImage); ok {
    597 		pal, _ = m.ColorModel().(color.Palette)
    598 	}
    599 	if pal != nil {
    600 		if len(pal) <= 2 {
    601 			e.cb = cbP1
    602 		} else if len(pal) <= 4 {
    603 			e.cb = cbP2
    604 		} else if len(pal) <= 16 {
    605 			e.cb = cbP4
    606 		} else {
    607 			e.cb = cbP8
    608 		}
    609 	} else {
    610 		switch m.ColorModel() {
    611 		case color.GrayModel:
    612 			e.cb = cbG8
    613 		case color.Gray16Model:
    614 			e.cb = cbG16
    615 		case color.RGBAModel, color.NRGBAModel, color.AlphaModel:
    616 			if opaque(m) {
    617 				e.cb = cbTC8
    618 			} else {
    619 				e.cb = cbTCA8
    620 			}
    621 		default:
    622 			if opaque(m) {
    623 				e.cb = cbTC16
    624 			} else {
    625 				e.cb = cbTCA16
    626 			}
    627 		}
    628 	}
    629 
    630 	_, e.err = io.WriteString(w, pngHeader)
    631 	e.writeIHDR()
    632 	if pal != nil {
    633 		e.writePLTEAndTRNS(pal)
    634 	}
    635 	e.writeIDATs()
    636 	e.writeIEND()
    637 	return e.err
    638 }