zorldo

Goofing around with Ebiten
git clone git://bsandro.tech/zorldo
Log | Files | Refs | README

linmath.h (12708B)


      1 #ifndef LINMATH_H
      2 #define LINMATH_H
      3 
      4 #include <math.h>
      5 
      6 #ifdef _MSC_VER
      7 #define inline __inline
      8 #endif
      9 
     10 #define LINMATH_H_DEFINE_VEC(n) \
     11 typedef float vec##n[n]; \
     12 static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
     13 { \
     14 	int i; \
     15 	for(i=0; i<n; ++i) \
     16 		r[i] = a[i] + b[i]; \
     17 } \
     18 static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
     19 { \
     20 	int i; \
     21 	for(i=0; i<n; ++i) \
     22 		r[i] = a[i] - b[i]; \
     23 } \
     24 static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
     25 { \
     26 	int i; \
     27 	for(i=0; i<n; ++i) \
     28 		r[i] = v[i] * s; \
     29 } \
     30 static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
     31 { \
     32 	float p = 0.; \
     33 	int i; \
     34 	for(i=0; i<n; ++i) \
     35 		p += b[i]*a[i]; \
     36 	return p; \
     37 } \
     38 static inline float vec##n##_len(vec##n const v) \
     39 { \
     40 	return (float) sqrt(vec##n##_mul_inner(v,v)); \
     41 } \
     42 static inline void vec##n##_norm(vec##n r, vec##n const v) \
     43 { \
     44 	float k = 1.f / vec##n##_len(v); \
     45 	vec##n##_scale(r, v, k); \
     46 }
     47 
     48 LINMATH_H_DEFINE_VEC(2)
     49 LINMATH_H_DEFINE_VEC(3)
     50 LINMATH_H_DEFINE_VEC(4)
     51 
     52 static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
     53 {
     54 	r[0] = a[1]*b[2] - a[2]*b[1];
     55 	r[1] = a[2]*b[0] - a[0]*b[2];
     56 	r[2] = a[0]*b[1] - a[1]*b[0];
     57 }
     58 
     59 static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
     60 {
     61 	float p  = 2.f*vec3_mul_inner(v, n);
     62 	int i;
     63 	for(i=0;i<3;++i)
     64 		r[i] = v[i] - p*n[i];
     65 }
     66 
     67 static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
     68 {
     69 	r[0] = a[1]*b[2] - a[2]*b[1];
     70 	r[1] = a[2]*b[0] - a[0]*b[2];
     71 	r[2] = a[0]*b[1] - a[1]*b[0];
     72 	r[3] = 1.f;
     73 }
     74 
     75 static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
     76 {
     77 	float p  = 2.f*vec4_mul_inner(v, n);
     78 	int i;
     79 	for(i=0;i<4;++i)
     80 		r[i] = v[i] - p*n[i];
     81 }
     82 
     83 typedef vec4 mat4x4[4];
     84 static inline void mat4x4_identity(mat4x4 M)
     85 {
     86 	int i, j;
     87 	for(i=0; i<4; ++i)
     88 		for(j=0; j<4; ++j)
     89 			M[i][j] = i==j ? 1.f : 0.f;
     90 }
     91 static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
     92 {
     93 	int i, j;
     94 	for(i=0; i<4; ++i)
     95 		for(j=0; j<4; ++j)
     96 			M[i][j] = N[i][j];
     97 }
     98 static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
     99 {
    100 	int k;
    101 	for(k=0; k<4; ++k)
    102 		r[k] = M[k][i];
    103 }
    104 static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
    105 {
    106 	int k;
    107 	for(k=0; k<4; ++k)
    108 		r[k] = M[i][k];
    109 }
    110 static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
    111 {
    112 	int i, j;
    113 	for(j=0; j<4; ++j)
    114 		for(i=0; i<4; ++i)
    115 			M[i][j] = N[j][i];
    116 }
    117 static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
    118 {
    119 	int i;
    120 	for(i=0; i<4; ++i)
    121 		vec4_add(M[i], a[i], b[i]);
    122 }
    123 static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
    124 {
    125 	int i;
    126 	for(i=0; i<4; ++i)
    127 		vec4_sub(M[i], a[i], b[i]);
    128 }
    129 static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
    130 {
    131 	int i;
    132 	for(i=0; i<4; ++i)
    133 		vec4_scale(M[i], a[i], k);
    134 }
    135 static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
    136 {
    137 	int i;
    138 	vec4_scale(M[0], a[0], x);
    139 	vec4_scale(M[1], a[1], y);
    140 	vec4_scale(M[2], a[2], z);
    141 	for(i = 0; i < 4; ++i) {
    142 		M[3][i] = a[3][i];
    143 	}
    144 }
    145 static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
    146 {
    147 	mat4x4 temp;
    148 	int k, r, c;
    149 	for(c=0; c<4; ++c) for(r=0; r<4; ++r) {
    150 		temp[c][r] = 0.f;
    151 		for(k=0; k<4; ++k)
    152 			temp[c][r] += a[k][r] * b[c][k];
    153 	}
    154 	mat4x4_dup(M, temp);
    155 }
    156 static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
    157 {
    158 	int i, j;
    159 	for(j=0; j<4; ++j) {
    160 		r[j] = 0.f;
    161 		for(i=0; i<4; ++i)
    162 			r[j] += M[i][j] * v[i];
    163 	}
    164 }
    165 static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
    166 {
    167 	mat4x4_identity(T);
    168 	T[3][0] = x;
    169 	T[3][1] = y;
    170 	T[3][2] = z;
    171 }
    172 static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
    173 {
    174 	vec4 t = {x, y, z, 0};
    175 	vec4 r;
    176 	int i;
    177 	for (i = 0; i < 4; ++i) {
    178 		mat4x4_row(r, M, i);
    179 		M[3][i] += vec4_mul_inner(r, t);
    180 	}
    181 }
    182 static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
    183 {
    184 	int i, j;
    185 	for(i=0; i<4; ++i) for(j=0; j<4; ++j)
    186 		M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
    187 }
    188 static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
    189 {
    190 	float s = sinf(angle);
    191 	float c = cosf(angle);
    192 	vec3 u = {x, y, z};
    193 
    194 	if(vec3_len(u) > 1e-4) {
    195 		mat4x4 T, C, S = {{0}};
    196 
    197 		vec3_norm(u, u);
    198 		mat4x4_from_vec3_mul_outer(T, u, u);
    199 
    200 		S[1][2] =  u[0];
    201 		S[2][1] = -u[0];
    202 		S[2][0] =  u[1];
    203 		S[0][2] = -u[1];
    204 		S[0][1] =  u[2];
    205 		S[1][0] = -u[2];
    206 
    207 		mat4x4_scale(S, S, s);
    208 
    209 		mat4x4_identity(C);
    210 		mat4x4_sub(C, C, T);
    211 
    212 		mat4x4_scale(C, C, c);
    213 
    214 		mat4x4_add(T, T, C);
    215 		mat4x4_add(T, T, S);
    216 
    217 		T[3][3] = 1.;
    218 		mat4x4_mul(R, M, T);
    219 	} else {
    220 		mat4x4_dup(R, M);
    221 	}
    222 }
    223 static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
    224 {
    225 	float s = sinf(angle);
    226 	float c = cosf(angle);
    227 	mat4x4 R = {
    228 		{1.f, 0.f, 0.f, 0.f},
    229 		{0.f,   c,   s, 0.f},
    230 		{0.f,  -s,   c, 0.f},
    231 		{0.f, 0.f, 0.f, 1.f}
    232 	};
    233 	mat4x4_mul(Q, M, R);
    234 }
    235 static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
    236 {
    237 	float s = sinf(angle);
    238 	float c = cosf(angle);
    239 	mat4x4 R = {
    240 		{   c, 0.f,  -s, 0.f},
    241 		{ 0.f, 1.f, 0.f, 0.f},
    242 		{   s, 0.f,   c, 0.f},
    243 		{ 0.f, 0.f, 0.f, 1.f}
    244 	};
    245 	mat4x4_mul(Q, M, R);
    246 }
    247 static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
    248 {
    249 	float s = sinf(angle);
    250 	float c = cosf(angle);
    251 	mat4x4 R = {
    252 		{   c,   s, 0.f, 0.f},
    253 		{  -s,   c, 0.f, 0.f},
    254 		{ 0.f, 0.f, 1.f, 0.f},
    255 		{ 0.f, 0.f, 0.f, 1.f}
    256 	};
    257 	mat4x4_mul(Q, M, R);
    258 }
    259 static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
    260 {
    261 	float idet;
    262 	float s[6];
    263 	float c[6];
    264 	s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
    265 	s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2];
    266 	s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3];
    267 	s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2];
    268 	s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3];
    269 	s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3];
    270 
    271 	c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1];
    272 	c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2];
    273 	c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3];
    274 	c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2];
    275 	c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3];
    276 	c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
    277 
    278 	/* Assumes it is invertible */
    279 	idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
    280 
    281 	T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
    282 	T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
    283 	T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
    284 	T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
    285 
    286 	T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
    287 	T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
    288 	T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
    289 	T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
    290 
    291 	T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
    292 	T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
    293 	T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
    294 	T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
    295 
    296 	T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
    297 	T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
    298 	T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
    299 	T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
    300 }
    301 static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
    302 {
    303 	float s = 1.;
    304 	vec3 h;
    305 
    306 	mat4x4_dup(R, M);
    307 	vec3_norm(R[2], R[2]);
    308 
    309 	s = vec3_mul_inner(R[1], R[2]);
    310 	vec3_scale(h, R[2], s);
    311 	vec3_sub(R[1], R[1], h);
    312 	vec3_norm(R[2], R[2]);
    313 
    314 	s = vec3_mul_inner(R[1], R[2]);
    315 	vec3_scale(h, R[2], s);
    316 	vec3_sub(R[1], R[1], h);
    317 	vec3_norm(R[1], R[1]);
    318 
    319 	s = vec3_mul_inner(R[0], R[1]);
    320 	vec3_scale(h, R[1], s);
    321 	vec3_sub(R[0], R[0], h);
    322 	vec3_norm(R[0], R[0]);
    323 }
    324 
    325 static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
    326 {
    327 	M[0][0] = 2.f*n/(r-l);
    328 	M[0][1] = M[0][2] = M[0][3] = 0.f;
    329 
    330 	M[1][1] = 2.f*n/(t-b);
    331 	M[1][0] = M[1][2] = M[1][3] = 0.f;
    332 
    333 	M[2][0] = (r+l)/(r-l);
    334 	M[2][1] = (t+b)/(t-b);
    335 	M[2][2] = -(f+n)/(f-n);
    336 	M[2][3] = -1.f;
    337 
    338 	M[3][2] = -2.f*(f*n)/(f-n);
    339 	M[3][0] = M[3][1] = M[3][3] = 0.f;
    340 }
    341 static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
    342 {
    343 	M[0][0] = 2.f/(r-l);
    344 	M[0][1] = M[0][2] = M[0][3] = 0.f;
    345 
    346 	M[1][1] = 2.f/(t-b);
    347 	M[1][0] = M[1][2] = M[1][3] = 0.f;
    348 
    349 	M[2][2] = -2.f/(f-n);
    350 	M[2][0] = M[2][1] = M[2][3] = 0.f;
    351 
    352 	M[3][0] = -(r+l)/(r-l);
    353 	M[3][1] = -(t+b)/(t-b);
    354 	M[3][2] = -(f+n)/(f-n);
    355 	M[3][3] = 1.f;
    356 }
    357 static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
    358 {
    359 	/* NOTE: Degrees are an unhandy unit to work with.
    360 	 * linmath.h uses radians for everything! */
    361 	float const a = 1.f / (float) tan(y_fov / 2.f);
    362 
    363 	m[0][0] = a / aspect;
    364 	m[0][1] = 0.f;
    365 	m[0][2] = 0.f;
    366 	m[0][3] = 0.f;
    367 
    368 	m[1][0] = 0.f;
    369 	m[1][1] = a;
    370 	m[1][2] = 0.f;
    371 	m[1][3] = 0.f;
    372 
    373 	m[2][0] = 0.f;
    374 	m[2][1] = 0.f;
    375 	m[2][2] = -((f + n) / (f - n));
    376 	m[2][3] = -1.f;
    377 
    378 	m[3][0] = 0.f;
    379 	m[3][1] = 0.f;
    380 	m[3][2] = -((2.f * f * n) / (f - n));
    381 	m[3][3] = 0.f;
    382 }
    383 static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
    384 {
    385 	/* Adapted from Android's OpenGL Matrix.java.                        */
    386 	/* See the OpenGL GLUT documentation for gluLookAt for a description */
    387 	/* of the algorithm. We implement it in a straightforward way:       */
    388 
    389 	/* TODO: The negation of of can be spared by swapping the order of
    390 	 *       operands in the following cross products in the right way. */
    391 	vec3 f;
    392 	vec3 s;
    393 	vec3 t;
    394 
    395 	vec3_sub(f, center, eye);
    396 	vec3_norm(f, f);
    397 
    398 	vec3_mul_cross(s, f, up);
    399 	vec3_norm(s, s);
    400 
    401 	vec3_mul_cross(t, s, f);
    402 
    403 	m[0][0] =  s[0];
    404 	m[0][1] =  t[0];
    405 	m[0][2] = -f[0];
    406 	m[0][3] =   0.f;
    407 
    408 	m[1][0] =  s[1];
    409 	m[1][1] =  t[1];
    410 	m[1][2] = -f[1];
    411 	m[1][3] =   0.f;
    412 
    413 	m[2][0] =  s[2];
    414 	m[2][1] =  t[2];
    415 	m[2][2] = -f[2];
    416 	m[2][3] =   0.f;
    417 
    418 	m[3][0] =  0.f;
    419 	m[3][1] =  0.f;
    420 	m[3][2] =  0.f;
    421 	m[3][3] =  1.f;
    422 
    423 	mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
    424 }
    425 
    426 typedef float quat[4];
    427 static inline void quat_identity(quat q)
    428 {
    429 	q[0] = q[1] = q[2] = 0.f;
    430 	q[3] = 1.f;
    431 }
    432 static inline void quat_add(quat r, quat a, quat b)
    433 {
    434 	int i;
    435 	for(i=0; i<4; ++i)
    436 		r[i] = a[i] + b[i];
    437 }
    438 static inline void quat_sub(quat r, quat a, quat b)
    439 {
    440 	int i;
    441 	for(i=0; i<4; ++i)
    442 		r[i] = a[i] - b[i];
    443 }
    444 static inline void quat_mul(quat r, quat p, quat q)
    445 {
    446 	vec3 w;
    447 	vec3_mul_cross(r, p, q);
    448 	vec3_scale(w, p, q[3]);
    449 	vec3_add(r, r, w);
    450 	vec3_scale(w, q, p[3]);
    451 	vec3_add(r, r, w);
    452 	r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
    453 }
    454 static inline void quat_scale(quat r, quat v, float s)
    455 {
    456 	int i;
    457 	for(i=0; i<4; ++i)
    458 		r[i] = v[i] * s;
    459 }
    460 static inline float quat_inner_product(quat a, quat b)
    461 {
    462 	float p = 0.f;
    463 	int i;
    464 	for(i=0; i<4; ++i)
    465 		p += b[i]*a[i];
    466 	return p;
    467 }
    468 static inline void quat_conj(quat r, quat q)
    469 {
    470 	int i;
    471 	for(i=0; i<3; ++i)
    472 		r[i] = -q[i];
    473 	r[3] = q[3];
    474 }
    475 static inline void quat_rotate(quat r, float angle, vec3 axis) {
    476 	int i;
    477 	vec3 v;
    478 	vec3_scale(v, axis, sinf(angle / 2));
    479 	for(i=0; i<3; ++i)
    480 		r[i] = v[i];
    481 	r[3] = cosf(angle / 2);
    482 }
    483 #define quat_norm vec4_norm
    484 static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
    485 {
    486 /*
    487  * Method by Fabian 'ryg' Giessen (of Farbrausch)
    488 t = 2 * cross(q.xyz, v)
    489 v' = v + q.w * t + cross(q.xyz, t)
    490  */
    491 	vec3 t = {q[0], q[1], q[2]};
    492 	vec3 u = {q[0], q[1], q[2]};
    493 
    494 	vec3_mul_cross(t, t, v);
    495 	vec3_scale(t, t, 2);
    496 
    497 	vec3_mul_cross(u, u, t);
    498 	vec3_scale(t, t, q[3]);
    499 
    500 	vec3_add(r, v, t);
    501 	vec3_add(r, r, u);
    502 }
    503 static inline void mat4x4_from_quat(mat4x4 M, quat q)
    504 {
    505 	float a = q[3];
    506 	float b = q[0];
    507 	float c = q[1];
    508 	float d = q[2];
    509 	float a2 = a*a;
    510 	float b2 = b*b;
    511 	float c2 = c*c;
    512 	float d2 = d*d;
    513 
    514 	M[0][0] = a2 + b2 - c2 - d2;
    515 	M[0][1] = 2.f*(b*c + a*d);
    516 	M[0][2] = 2.f*(b*d - a*c);
    517 	M[0][3] = 0.f;
    518 
    519 	M[1][0] = 2*(b*c - a*d);
    520 	M[1][1] = a2 - b2 + c2 - d2;
    521 	M[1][2] = 2.f*(c*d + a*b);
    522 	M[1][3] = 0.f;
    523 
    524 	M[2][0] = 2.f*(b*d + a*c);
    525 	M[2][1] = 2.f*(c*d - a*b);
    526 	M[2][2] = a2 - b2 - c2 + d2;
    527 	M[2][3] = 0.f;
    528 
    529 	M[3][0] = M[3][1] = M[3][2] = 0.f;
    530 	M[3][3] = 1.f;
    531 }
    532 
    533 static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
    534 {
    535 /*  XXX: The way this is written only works for othogonal matrices. */
    536 /* TODO: Take care of non-orthogonal case. */
    537 	quat_mul_vec3(R[0], q, M[0]);
    538 	quat_mul_vec3(R[1], q, M[1]);
    539 	quat_mul_vec3(R[2], q, M[2]);
    540 
    541 	R[3][0] = R[3][1] = R[3][2] = 0.f;
    542 	R[3][3] = 1.f;
    543 }
    544 static inline void quat_from_mat4x4(quat q, mat4x4 M)
    545 {
    546 	float r=0.f;
    547 	int i;
    548 
    549 	int perm[] = { 0, 1, 2, 0, 1 };
    550 	int *p = perm;
    551 
    552 	for(i = 0; i<3; i++) {
    553 		float m = M[i][i];
    554 		if( m < r )
    555 			continue;
    556 		m = r;
    557 		p = &perm[i];
    558 	}
    559 
    560 	r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
    561 
    562 	if(r < 1e-6) {
    563 		q[0] = 1.f;
    564 		q[1] = q[2] = q[3] = 0.f;
    565 		return;
    566 	}
    567 
    568 	q[0] = r/2.f;
    569 	q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r);
    570 	q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r);
    571 	q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
    572 }
    573 
    574 #endif